Matemáticas

Así es como se ve el bloque de matemáticas.

Teorema de Pitágoras

a2+b2=c2a^{2} + b^{2} = c^{2}

Fórmula cuadrática

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^{2} – 4ac}}{2a}

Euler (identidad)

eiπ+1=0e^{i\pi} + 1 = 0

Serie de Taylor de exe^{x}ex

ex=n=0xnn!e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}

Regla de Bayes

P(A|B)=P(B|A)P(A)P(B)P(A \mid B) = \frac{P(B \mid A)\, P(A)}{P(B)}

Integral de la campana gaussiana

ex2dx=π\int_{-\infty}^{\infty} e^{-x^{2}}\, dx = \sqrt{\pi}

Transformada de Fourier

(f)(ω)=f(t)eiωtdt\mathcal{F}(f)(\omega) = \int_{-\infty}^{\infty} f(t)\, e^{-i\omega t}\, dt

Ecuación de ondas en 3D

2ut2=c2(2ux2+2uy2+2uz2)\frac{\partial^{2} u}{\partial t^{2}} = c^{2}\left( \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right)

Ecuaciones de Maxwell (forma diferencial)

𝐄=ρε0,𝐁=0,×𝐄=𝐁t,×𝐁=μ0𝐉+μ0ε0𝐄t.\begin{aligned} \nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0},\\ \nabla \cdot \mathbf{B} &= 0,\\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t},\\ \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}. \end{aligned}

Ecuación de Schrödinger (dependiente del tiempo)

itΨ(𝐫,t)=22m2Ψ(𝐫,t)+V(𝐫,t)Ψ(𝐫,t)i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) = -\frac{\hbar^{2}}{2m}\nabla^{2}\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t)

Acción de Einstein–Hilbert (Relatividad General)

S=116πGRgd4xS = \frac{1}{16\pi G} \int R \,\sqrt{-g}\; d^{4}x

y más…

u(x,t)=n=1Ansin(nπxL)cos(nπctL)u(x,t) = \sum_{n=1}^{\infty} A_n \sin\!\left(\frac{n\pi x}{L}\right) \cos\!\left(\frac{n\pi c t}{L}\right)

y más….

tΩ(t)ρ(𝐱,t)dV=Ω(t)(ρt+(ρ𝐯))dV\frac{\partial}{\partial t} \int_{\Omega(t)} \rho(\mathbf{x},t)\, dV = \int_{\Omega(t)} \left( \frac{\partial \rho}{\partial t} + \nabla\cdot(\rho\mathbf{v}) \right)dV

y más…

Gμν=Rμν12gμνR+Λgμν8πTμνG_{\mu\nu} = R_{\mu\nu} – \tfrac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} – 8\pi T_{\mu\nu}